STRUCTURAL DESIGN

SUMMARY CALCULATIONS REPORT

for

TRANSIT CENTER

BY: Eng. Ali Akbar Shaikhzadeh DATE: 07 Oct 2018

Contents

PROJECT INFORMATION	3
STRUCTURAL LOADING CRITERIA	4
Dead Loads	4
Live Loads	7
Wind Loading Prameters	7
Seismic Loading Parameters	7
STRUCTURAL CONTROL FROM ANALYSIS RESULTS	8
Horizontal Irregularities (ASCE 12.3.2.1)	8
Vertical Irregularities (ASCE 12.3.2.2)	9
BASEMENT RETAINING WALL ANALYSIS & DESIGN	10
Retaining wall analysis	10
Retaining wall design	12
FRAME DESIGN	17
FOUNDATION & SLABS DESIGN	19

	Project	Job Ref.	
T	Transi		
6	Section		Sheet no./
			3
	Calc. by	Chk'd by	Date
Towsree Thatr Construction Company	E. Ali Akbar Shaikhzadeh		4/8/2016

PROJECT INFORMATION

Client	Norwegian Refugee Council
Type of project	Residential Building
Project Location	Nimrooz, Afghanistan
Type of main framing	Reinforced concrete beams & columns
Type of slabs	Reinforced concrete slabs
Type of foundation	Reinforced concrete strip foundation
Type of seismic resisting system	Intermediate moment frame
Loading design code (live, seismic, snow,)	ASCE 7-16
Concrete design code	ACI 318-14
Steel design code	Not Applicable
Structural designer(s)	Eng. Ali Akbar Shaikhzadeh

	Project		Job Ref.
T	Transi		
16.	Section		Sheet no./
			4
	Calc. by	Chk'd by	Date
Tourse Than	E. Ali Akbar Shaikhzadeh		4/8/2016

STRUCTURAL LOADING CRITERIA

DEAD LOADS

Exterior Walls

Layer Material	Thickness (m)	Density (kg/m³)	Weight/Area (kg/m²)	Remarks
Brick	0.2	850	170	
Grout (Gypsum & soil) for inner face	0.02	1600	32	
Finishing (inner face)	0.005	1300	6.5	
Grout (cement) for outer face	0.04	2100	84	
Light Stone (outer face)	0.025	2500	62.5	
		Total Weight	355	

Interior Walls (Partitions)

Layer Material	Thickness	Density	Weight/Area	Pemarks
	(m)	(kg/m³)	(kg/m²)	INCINAINS
Brick	0.1	850	85	
Grout (Gypsum & soil) for inner face	0.02	1600	32	
Finishing (inner face)	0.005	1300	6.5	
Grout (Gypsum & soil) for outer face	0.02	1600	32	
Finishing (outer face)	0.005	1300	6.5	
		Total Weight	162	

Floor Slabs (without the concrete slab)

Layer Material	Thickness (m)	Density (kg/m³)	Weight/Area (kg/m²)	Remarks
Grout (cement) for top face	0.025	2100	52.5	
Ceramics	0.005	2100	10.5	
Grout (Gypsum & soil) for bottom face	0.02	1600	32	
Finishing (bottom face)	0.005	1300	6.5	
		Total Weight	101.5	

Roof Slab (without the concrete slab)

Laver Material	Thickness	Density	Weight/Area	Pemarks
Layel Material	(m)	(kg/m³)	(kg/m²)	Rellians
Asphalt	0.03	2200	66	
Bitumen	-	-	15	
Grout (cement) for top face	0.02	2100	42	
Lightweight concrete (Grading)	0.15	2100	315	
Grout (Gypsum & soil) for bottom face	0.02	1600	32	
Finishing (bottom face)	0.005	1300	6.5	
		Total Weight	476.5	

	Project	Job Ref.	
16.	Section		Sheet no./
			5
	Calc. by	Chk'd by	Date
Towers Than Construction Company	E. Ali Akbar Shaikhzadeh		4/8/2016

Stairs

DEAD LOAD CALCULATIONS FOR RAMP OF STAIRS

Size of Run (m)	0.3
Size of Rise (m)	0.15
Angle of Ramp (deg.)	31

NOTE: Table calculations are for one step of the stairs and 1-m width (perpendicular to ramp direction) only.						
Layer Material	Thickness (m)	Projected Plan Longitudinal Size (m)	Density (kg/m ³)	Weight/Length	Remarks	
Thread stone	0.040	0.32	2500	32.0		
Rise stone	0.020	0.11	2500	5.5		
Grout under stones	0.020	0.37	2100	15.5		
Brick (average height used)	0.055	0.26	1850	26.5		
Concrete ramp	0.150	0.35	2500	131.2		
Gypsum & soil	0.020	0.35	1600	11.2		
Finishing (bottom face)	0.005	0.35	1300	2.3		
Total Weight 224.2						

Weight per 1-meter length of ramp	747.4	kg/m
If we multiply by one meter width, the total weight in one square meter is obtained. Thus:		
Weight per 1-m ² projected plan area of ramp	747.4	kg/m²

	Project		Job Ref.
T	Transi	Transit Center	
16	Section		Sheet no./
			6
	Calc. by	Chk'd by	Date
Tower Than	E. Ali Akbar Shaikhzadeh		4/8/2016

DEAD LOAD CALCULATIONS FOR LANDING OF STAIRS

Layer Material	Thickness (m)	Projected Plan Longitudinal Size (m)	Density (kg/m ³)	Weight/Area (kg/m²)	Remarks
Thread stone	0.040	-	2500	100.0	
Grout under stones	0.020	-	2100	42.0	
Concrete ramp	0.150	-	2500	375.0	
Gypsum & soil	0.020	-	1600	32.0	
Finishing (bottom face)	0.005	-	1300	6.5	
	•		Total Weight	555.5	

Weight per 1-m² of landing

555.5 kg/m²

SUMMARY OF LOADS FOR STAIR

Weight per 1-m ² projected plan area of ramp	747.4	kg/m²
Weight per 1-m ² of landing	555.5	kg/m²
Live load per 1-m ² of ramp & landing	500.0	kg/m²

NOTES:

1- Using the tributary area of each beam supporting the stairs, the total dead and live loads on that beam is obtained.

2- Dividing by the beam length, the linear load on the beam can be calculated.

3- In calculation of the ramp tributary area on a supporting beam, the projected plan area of ramp is considered.

	Project		Job Ref.
T	Transit Center		
	Section		Sheet no./
			7
	Calc. by	Chk'd by	Date
Tower Shahr	E. Ali Akbar Shaikhzadeh		4/8/2016

LIVE LOADS

Live loads has been selected based on ASCE 7-16 Table 4-1.

WIND LOADING PRAMETERS

Parameter	Value	Remarks
Structure type (enclosed, partially enclosed, or open)	Partially Enclosed	
Roof type	Flat	
Basic wind speed	140 km/h	
Risk category	II	
Directionality factor, kd	0.85	
Topographical factor, k _{zt}	1	
Exposure category	С	
Gust effect factor	0.85	
Topography significant? (Y/N)	No	
Design method (directional, envelope, C&C)	Directional	

SEISMIC LOADING PARAMETERS

Parameter	Value	Remarks
Site class (section 11.4.2)	D	
Mapped spectral acceleration parameter S_s	0.60 g	
Mapped spectral acceleration parameter S ₁	0.30 g	
Risk category	II	
Seismic design category (Table 11.6-1 & 11.6-2)	D	
Lateral load resisting system	Intermediate moment frame	
Long-period transition period	8 sec	
Response modification factor, R	5	
System overstrength, omega	3	
Deflection amplification factor, C _d	4.5	
Occupancy importance, I	1	

	Project		Job Ref.
T	Transi	t Center	
16	Section		Sheet no./
2			8
	Calc. by	Chk'd by	Date
Tow/ea Shahr Construction Company	E. Ali Akbar Shaikhzadeh		4/8/2016

STRUCTURAL CONTROL FROM ANALYSIS RESULTS

HORIZONTAL IRREGULARITIES (ASCE 12.3.2.1)

HORIZONTAL STRUCTURAL IRREGULARITIES			
Figure	Description	Type (ASCE)	
$ \begin{array}{c} \downarrow \delta_{avg} \\ \uparrow \\ $	$\delta_{max} < 1.2 \delta_{ave}$ No irregularity $1.2 \delta_{ave} \le \delta_{max} \le 1.4 \delta_{ave}$ Irregularity $\delta_{max} > 1.4 \delta_{ave}$ Extreme irregularity	1a & 1b Torsional Irregularity	
$L_{\gamma} \downarrow \rho_{\gamma}$	Irregularity exists if: $p_y > 0.15L_y$ and $p_x > 0.15L_x$	2 Reentrant Corner Irregularity	
Open	Irregularity exists if open area > 0.5 times floor area OR if effective diaphragm stiffness vaires by more than 50% from one story to the next. NOTE: The provisions are not specific on how effective diphragm stiffness is to be computed.	3 Diphragm Discontinuity Irregularity	
	The out-of-plane offset should be avoided.	4 Out-of- Plane Offset	
	Nonparallel system Irregularity exists when the vertical lateral force resisting elements are not parallel to or symmetric about the major orthogonal axes of the seismic force resisting system.	5 Nonparallel System Irregularity	

	Project		Job Ref.
T	Transi	t Center	
16	Section		Sheet no./
			9
	Calc. by	Chk'd by	Date
Towers Shahr	E. Ali Akbar Shaikhzadeh		4/8/2016

VERTICAL IRREGULARITIES (ASCE 12.3.2.2)

VERTICAL STRUCTURAL IRREGULARITIES

Figure	Description	Type (ASCE)
Exception: Irregularity does not exist if no story drift ratio is greater than 1.3 times drift ratio of story above. Irregularity 1b is NOT PERMITTED in SDC E or F.	Irregularity (1a) exists if stiffness of any story is less than 70% of the stiffness of the story above or less than 80% of the average stiffness of the three stories above. An extreme irregularity (1b) exists if stiffness of any sotry is less than 60% of the stiffness of the story above or less than 70% of the average stiffness of the three stories above.	1a & 1b Stiffness (Soft Story) Irregularity
δ K=1/δ	Irregularity exists if the effective mass of any story is more than 150% of the effective mass of an adjacent story. Exception: Irregularity does not exist if no story drift ratio is greater than 1.3 times drift ratio of story above.	2 Weight (Mass) Irregularity
$d_{i+1} \leftrightarrow$ $d_i \leftrightarrow$ $d_{i-1} \leftarrow$	Irregularity exists if the dimensions of the lateral resisting system at any story is more than 130% of that for any adjacent story.	3 Vertical Geometric Irregularity
d	Irregularity exists if the offset is greater than the width (<i>d</i>) or there exists a reduction in stiffness of the story below.	4 In-Plane Discontinuity Irregularity
	Irregularity (5a) exists if the lateral strength of any story is less than 80% of the strength of the story above. An extreme irregularity (5b) exists if the lateral strength of any story is less than 65% of the strength of the story above. Irregularities 5a and 5b are NOT PERMITTED in SDC E or F. Irregularity 5b not permitted in SDC D.	5a & 5b Strength (Weak Story) Irregularity

	Project		Job Ref.
T	Transi	t Center	
6	Section		Sheet no./
			10
	Calc. by	Chk'd by	Date
Tower Shahr Construction Company	E. Ali Akbar Shaikhzadeh		4/8/2016

BASEMENT RETAINING WALL ANALYSIS & DESIGN

RETAINING WALL ANALYSIS

In accordance with International Building Code 2015

Retaining wall details	
Stem type;	Propped cantilever pinned at the base
Stem height;	h _{stem} = 2500 mm
Prop height;	h _{prop} = 2500 mm
Stem thickness;	t _{stem} = 200 mm
Angle to rear face of stem;	α = 90 deg
Stem density;	γ _{stem} = 24 kN/m ³
Toe length;	I _{toe} = 1000 mm
Base thickness;	t _{base} = 500 mm
Base density;	γ _{base} = 24 kN/m ³
Height of retained soil;	h _{ret} = 2300 mm
Angle of soil surface;	$\beta = 0 \deg$
Depth of cover;	d _{cover} = 0 mm
Retained soil properties	
Soil type;	Medium dense well graded sand
Moist density;	γ _{mr} = 21 kN/m ³
Saturated density;	γ_{sr} = 23 kN/m ³
Effective angle of internal resistance;	$\phi_r = 30 \text{ deg}$
Effective wall friction angle;	$\delta_r = 0 \operatorname{deg}$
Base soil properties	
Soil type;	Medium dense well graded sand
Soil density;	γ _b = 18 kN/m ³
Cohesion;	$c_b = 0 \text{ kN/m}^2$
Effective angle of internal resistance;	φ _b = 30 deg
Effective wall friction angle;	δ_{b} = 15 deg
Effective base friction angle;	$\delta_{bb} = 30 \text{ deg}$
Allowable bearing pressure;	P _{bearing} = 96 kN/m ²
Loading details	
Dead surcharge load;	Surcharge _D = 5 kN/m ²
Live surcharge load;	Surcharge∟ = 5 kN/m²

	Project		Job Ref.
The	Transit Center		
6	Section		Sheet no./
			11
	Calc. by	Chk'd by	Date
Towrea Shahr	E. Ali Akbar Shaikhzadeh		4/8/2016

Calculate retaining wall geometry	
Base length;	I _{base} = I _{toe} + t _{stem} = 1200 mm
Moist soil height;	h _{moist} = h _{soil} = 2300 mm
Length of surcharge load;	I _{sur} = I _{heel} = 0 mm
 Distance to vertical component; 	$x_{sur_v} = I_{base} - I_{heel} / 2 = 1200 \text{ mm}$
Effective height of wall;	h_{eff} = h_{base} + d_{cover} + h_{ret} = 2800 mm
 Distance to horizontal component; 	x _{sur_h} = h _{eff} / 2 = 1400 mm
Area of wall stem;	A_{stem} = $h_{stem} \times t_{stem}$ = 0.5 m ²
 Distance to vertical component; 	x _{stem} = I _{toe} + t _{stem} / 2 = 1100 mm
Area of wall base;	$A_{\text{base}} = I_{\text{base}} \times t_{\text{base}} = 0.6 \text{ m}^2$
- Distance to vertical component;	x _{base} = I _{base} / 2 = 600 mm
Using Rankine theory	
At rest pressure coefficient;	$K_0 = 1 - \sin(\phi_r) = 0.500$
Passive pressure coefficient;	$K_{P} = (1 + sin(\phi_{b})) / (1 - sin(\phi_{b})) = 3.000$
From IBC 2015 cl.1807.2.3 Safety factor	
Load combination 1;	$1.0 \times \text{Dead}$ + $1.0 \times \text{Live}$ + $1.0 \times \text{Lateral earth}$
Bearing pressure check	
Vertical forces on wall	
Wall stem;	$F_{stem} = A_{stem} \times \gamma_{stem} = 12 \text{ kN/m}$
Wall base;	F_{base} = $A_{base} \times \gamma_{base}$ = 14.4 kN/m
Total;	F _{total_v} = F _{stem} + F _{base} = 26.4 kN/m

	Project		Job Ref.
T	Transit Center		
	Section		Sheet no./
	-		12
	Calc. by	Chk'd by	Date
Tow/ed Jhahr Construction Company	E. Ali Akbar Shaikhzadeh		4/8/2016

Horizontal forces on wall

Surcharge load;	$F_{sur_h} = K_0 \times (Surcharge_D + Surcharge_L) \times h_{eff} = 14 \text{ kN/m}$
Moist retained soil;	F_{moist_h} = $K_0 \times \gamma_{mr} \times h_{eff}^2$ / 2 = 41.2 kN/m
Base soil;	F_{pass_h} = -K _P × γ_b × (d _{cover} + h _{base}) ² / 2 = -6.7 kN/m
Total;	F _{total_h} = F _{moist_h} + F _{pass_h} + F _{sur_h} = 48.4 kN/m
Moments on wall	
Wall stem;	M _{stem} = F _{stem} × x _{stem} = 13.2 kNm/m
Wall base;	M _{base} = F _{base} × x _{base} = 8.6 kNm/m
Total;	M _{total} = M _{stem} + M _{base} + M _{sur} = 21.8 kNm/m
Check bearing pressure	
Distance to reaction;	$\overline{\mathbf{x}} = \mathbf{M}_{\text{total}} / \mathbf{F}_{\text{total}_{v}} = 827 \text{ mm}$
Eccentricity of reaction;	e = x - I _{base} / 2 = 227 mm
Loaded length of base;	$I_{load} = 3 \times (I_{base} - \overline{x}) = 1118 \text{ mm}$
Bearing pressure at toe;	$q_{toe} = 0 \text{ kN/m}^2$
Bearing pressure at heel;	$q_{\text{heel}} = 2 \times F_{\text{total}_v} / I_{\text{load}} = 47.2 \text{ kN/m}^2$
Factor of safety;	FoS _{bp} = P _{bearing} / max(q _{toe} , q _{heel}) = 2.033 ;

PASS - Allowable bearing pressure exceeds maximum applied bearing pressure

RETAINING WALL DESIGN

In accordance with ACI 318-14

Concrete details

Compressive strength of concrete;	f' _c = 28 N/mm ²
Concrete type;	Normal weight
Reinforcement details	
Yield strength of reinforcement;	fy = 420 N/mm ²
Modulus of elasticity or reinforcement;	E _s = 199948 N/mm ²
Cover to reinforcement	
Front face of stem;	c _{sf} = 40 mm
Rear face of stem;	c _{sr} = 50 mm
Top face of base;	c _{bt} = 50 mm

Bottom face of base; $c_{bb} = 75 \text{ mm}$

From IBC 2015 cl.1605.2.1 Basic load combinations

Load combination no.1;	1.4 × Dead
Load combination no.2;	$1.2 \times Dead$ + 1.6 \times Live + 1.6 \times Lateral earth
Load combination no.3;	$1.2 \times \text{Dead}$ + $1.0 \times \text{Earthquake}$ + $1.0 \times \text{Live}$ + $1.6 \times \text{Lateral earth}$
Load combination no.4;	$0.9 \times Dead$ + 1.0 \times Earthquake + 1.6 \times Lateral earth

Tedds calculation version 2.9.02

	Project		Job Ref.
	Transit Center		
16	Section		Sheet no./
	-		13
	Calc. by	Chk'd by	Date
Towerschool Company	E. Ali Akbar Shaikhzadeh		4/8/2016

h com	Project		Job Ref.
	Transit Center		
6	Section		Sheet no./
			14
	Calc. by	Chk'd by	Date
Tow/ea Shahr Communication Company	E. Ali Akbar Shaikhzadeh		4/8/2016

Check stem design at 1080 mm	
Depth of section;	h = 200 mm
Rectangular section in flexure - Section 22.	3
Design bending moment combination 2;	M = 19.6 kNm/m
Depth of tension reinforcement;	$d = h - c_{sf} - \phi_{sx} - \phi_{sfM} / 2 = 136 \text{ mm}$
Compression reinforcement provided;	16 mm dia bars @ 250 mm c/c
Area of compression reinforcement provided;	$A_{srM.prov} = \pi \times \phi_{srM^2} / (4 \times s_{srM}) = 804 \text{ mm}^2/\text{m}$
Tension reinforcement provided;	16 mm dia bars @ 250 mm c/c
Area of tension reinforcement provided;	$A_{sfM.prov}$ = $\pi \times \phi_{sfM^2}$ / (4 $\times s_{sfM}$) = 804 mm ² /m
Maximum reinforcement spacing - cl.11.7.2;	s _{max} = min(18 in, 3 × h) = 457 mm
	PASS - Reinforcement is adequately spaced
Depth of compression block;	a = $A_{sfM.prov} \times f_y / (0.85 \times f_c)$ = 14 mm
Neutral axis factor - cl.22.2.2.4.3;	$\beta_1 = min(max(0.85 - 0.05 \times (f_c - 28 \text{ N/mm}^2) / 7 \text{ N/mm}^2, 0.65), 0.85)$
	= 0.85
Depth to neutral axis;	c = a / β ₁ = 17 mm
Strain in reinforcement;	$\epsilon_t = 0.003 \times (d - c) / c = 0.021435$
	Section is in the tension controlled zone
Strength reduction factor;	$\phi_f = min(max(0.65 + (\epsilon_t - 0.002) \times (250 / 3), 0.65), 0.9) = 0.9$
Nominal flexural strength;	$M_n = A_{sfM,prov} \times f_y \times (d - a / 2) = 43.5 \text{ kNm/m}$
Design flexural strength;	$\phi M_n = \phi_f \times M_n = 39.2 \text{ kNm/m}$
	M / φM _n = 0.499
PA	SS - Design flexural strength exceeds factored bending moment
By iteration, reinforcement required by analysis	s; A _{sfM.des} = 391 mm ² /m
Minimum area of reinforcement - cl.9.6.1.2;	$A_{sfM.min}$ = max(0.25 × $\sqrt{(f_c \times 1 \text{ N/mm}^2)}$, 1.4 N/mm ²) × d / f _y = 453
mm²/m	

PASS - Area of reinforcement provided is greater than minimum area of reinforcement required

Check stem design at base of stem

Depth of section;

P	roject			Job Ref.
	Transit Center		t Center	
)	CUUN			15
Towreathahr	alc. by F Ali Akbai	Shaikhzadeh	Chk'd by	Date 4/8/2016
Construction Company E. All AKDAI		GhaikhZudoh		40/2010
Rectangular section in shear - Se	ection 22.5			
Design shear force;		V = 39.5 kN/n	า	
Concrete modification factor - cl.19	.2.4;	$\lambda = 1$		
Nominal concrete shear strength -	eqn.22.5.5.	1;	$V_c = 0.$	$17 \times \lambda \times \sqrt{(\mathbf{f'_c} \times 1 \text{ N/mm^2}) \times \mathbf{d}}$
= 122.3 kN/m				
Strength reduction factor;		φs = 0.75		
Design concrete shear strength - c	.11.5.1.1;	$\phi V_c = \phi_s \times V_c$	= 91.8 kN/m	
		V / $\phi V_c = 0.43$	1	
		·	PASS - No shea	r reinforcement is required
Chack stom dosign at prop				
Denth of section:		h = 200 mm		
		– 200 !!!!!		
Rectangular section in shear - Se	ection 22.5			
Design shear force;		V = 21 kN/m		
Concrete modification factor - cl.19	.2.4;	$\lambda = 1$,
Nominal concrete shear strength -	eqn.22.5.5.	1;	$V_{c} = 0.7$	$17 \times \lambda \times \sqrt{f_c \times 1 \text{ N/mm}^2} \times d$
= 122.3 kN/m				
Strength reduction factor;		$\phi_s = 0.75$		
Design concrete shear strength - c	1.11.5.1.1;	$\phi V_c = \phi_s \times V_c$	= 91.8 kN/m	
		$V / \phi V_c = 0.22$	9	
			PASS - No shea	r reinforcement is required
Horizontal reinforcement paralle	l to face of	stem		
Minimum area of reinforcement - cl	.11.6.1;	$A_{sx.req} = 0.002$. × t _{stem} = 400 mm²/m	
Transverse reinforcement provided	,	16 mm dia @	200 mm c/c each face	
Area of transverse reinforcement p	rovided;	$A_{sx.prov} = 2 \times \pi$	$x \times \phi_{sx}^2 / (4 \times s_{sx}) = 2011 \text{ m}$	ım²/m
PASS - Ar	ea of reinfo	prcement prov	ided is greater than area	a of reinforcement required
Rectangular section in shear - S	action 22 5	-	-	
Design shear force:		V = 8.1 kN/m		
Concrete modification factor - cl 19	21.	$\lambda = 1$		
Nominal concrete shear strength	2.2.7,	- ,	$V_{\rm c} = 0$	$17 \vee 2 \vee 2/(f \vee 1 \text{ N}/\text{mm}^2) \vee d$
	eqn.22.3.3.		$\mathbf{v}_{\mathbf{C}} = \mathbf{U}_{\mathbf{C}}$	
- 122 3 kN/m		.,		$17 \times 1 \times 10^{-1} \times 10^{-1} \times 10^{-1}$
= 122.3 kN/m		·, + = 0.75		17 × λ × ν(ι c × 1 ν /mm-) × α
= 122.3 kN/m Strength reduction factor;	7004	φs = 0.75	04.0 101/1	17 × λ × ν(ι c × ι ι ν /ιιιιι-) × α
 = 122.3 kN/m Strength reduction factor; Design concrete shear strength - cl 	1.7.6.3.1;	$\phi_{s} = 0.75$ $\phi_{Vc} = \phi_{s} \times V_{c}$	= 91.8 kN/m	17 × λ × ν(ι c × τ ι ν /ιιιιι-) × α
= 122.3 kN/m Strength reduction factor; Design concrete shear strength - cl	1.7.6.3.1;	$ φ_s = 0.75 $ $ φV_c = φ_s × V_c $ $ V / φV_c = 0.08 $	= 91.8 kN/m 9	17 × λ × ν(ι _c × ι ι ν /ιιιιι-) × α
= 122.3 kN/m Strength reduction factor; Design concrete shear strength - cl	1.7.6.3.1;	$φ_{s} = 0.75$ $φV_{c} = φ_{s} × V_{c}$ $V / φV_{c} = 0.08$	= 91.8 kN/m 9 <i>PASS - No shea</i>	r reinforcement is required
 = 122.3 kN/m Strength reduction factor; Design concrete shear strength - cl Check base design at toe 	l.7.6.3.1;	$\phi_{s} = 0.75$ $\phi V_{c} = \phi_{s} \times V_{c}$ $V / \phi V_{c} = 0.08$	= 91.8 kN/m 9 <i>PASS - No shea</i>	r reinforcement is required
 = 122.3 kN/m Strength reduction factor; Design concrete shear strength - cl Check base design at toe Depth of section; 	l.7.6.3.1;	φ _s = 0.75 φV _c = φ _s × V _c V / φV _c = 0.08 h = 500 mm	= 91.8 kN/m 9 <i>PASS - No shea</i>	r reinforcement is required
 = 122.3 kN/m Strength reduction factor; Design concrete shear strength - cl Check base design at toe Depth of section; Rectangular section in flexure - \$ 	I.7.6.3.1; Section 22.	φ _s = 0.75 φV _c = φ _s × V _c V / φV _c = 0.08 h = 500 mm	= 91.8 kN/m 9 <i>PASS - No shea</i>	r reinforcement is required
 = 122.3 kN/m Strength reduction factor; Design concrete shear strength - cl Check base design at toe Depth of section; Rectangular section in flexure - S Design bending moment combination 	I.7.6.3.1; Section 22 . on 1;	φ _s = 0.75 φV _c = φ _s × V _c V / φV _c = 0.08 h = 500 mm 3 M = 1.8 kNm/	= 91.8 kN/m 9 <i>PASS - No shea</i> m	r reinforcement is required
 = 122.3 kN/m Strength reduction factor; Design concrete shear strength - cl Check base design at toe Depth of section; Rectangular section in flexure - S Design bending moment combination Depth of tension reinforcement; 	I.7.6.3.1; Section 22 . on 1;	φ _s = 0.75 φV _c = φ _s × V _c V / φV _c = 0.08 h = 500 mm 3 M = 1.8 kNm/ d = h - c _{bt} - φ _b	= 91.8 kN/m 9 <i>PASS - No shea</i> m t / 2 = 442 mm	r reinforcement is required
 = 122.3 kN/m Strength reduction factor; Design concrete shear strength - cl Check base design at toe Depth of section; Rectangular section in flexure - S Design bending moment combination Depth of tension reinforcement; Compression reinforcement provided 	I.7.6.3.1; Section 22. on 1; ed;	$\phi_{s} = 0.75$ $\phi V_{c} = \phi_{s} \times V_{c}$ $V / \phi V_{c} = 0.08$ h = 500 mm 3 M = 1.8 kNm/ $d = h - c_{bt} - \phi_{b}$ 16 mm dia ba	= 91.8 kN/m 9 <i>PASS - No shea</i> m t / 2 = 442 mm rs @ 200 mm c/c	r reinforcement is required
 = 122.3 kN/m Strength reduction factor; Design concrete shear strength - cl Check base design at toe Depth of section; Rectangular section in flexure - S Design bending moment combination Depth of tension reinforcement; Compression reinforcement provided Area of compression reinforcement 	I.7.6.3.1; Section 22 . on 1; ed; t provided;	$\phi_{s} = 0.75$ $\phi V_{c} = \phi_{s} \times V_{c}$ $V / \phi V_{c} = 0.08$ h = 500 mm 3 M = 1.8 kNm/ $d = h - c_{bt} - \phi_{b}$ 16 mm dia ba $A_{bb.prov} = \pi \times \phi$	= 91.8 kN/m 9 <i>PASS - No shea</i> m t / 2 = 442 mm rs @ 200 mm c/c pbb ² / (4 × sbb) = 1005 mm ²	<i>r reinforcement is required</i>
 = 122.3 kN/m Strength reduction factor; Design concrete shear strength - cl Check base design at toe Depth of section; Rectangular section in flexure - S Design bending moment combination Depth of tension reinforcement; Compression reinforcement provided Area of compression reinforcement provided; 	I.7.6.3.1; Section 22. on 1; ed; t provided;	$\phi_{s} = 0.75$ $\phi V_{c} = \phi_{s} \times V_{c}$ $V / \phi V_{c} = 0.08$ $h = 500 \text{ mm}$ $M = 1.8 \text{ kNm/}$ $d = h - c_{bt} - \phi_{b}$ 16 mm dia ba $A_{bb.prov} = \pi \times \phi$ 16 mm dia ba	= 91.8 kN/m 9 <i>PASS - No shea</i> m t / 2 = 442 mm rs @ 200 mm c/c pbb ² / (4 × sbb) = 1005 mm ² rs @ 200 mm c/c	<i>r reinforcement is required</i>

	Project		Job Ref.
T	Transit Center		
6	Section		Sheet no./
			16
	Calc. by	Chk'd by	Date
Tower That	E. Ali Akbar Shaikhzadeh		4/8/2016

Maximum reinforcement spacing - cl.7.7.2.3; $s_{max} = min(18 in, 3 \times h) = 457 mm$ PASS - Reinforcement is adequately spaced Depth of compression block; $a = A_{bt.prov} \times f_y / (0.85 \times f'_c) = 18 \text{ mm}$ Neutral axis factor - cl.22.2.2.4.3; $\beta_1 = \min(\max(0.85 - 0.05 \times (f_c - 28 \text{ N/mm}^2) / 7 \text{ N/mm}^2, 0.65), 0.85)$ = 0.85 $c = a / \beta_1 = 21 \text{ mm}$ Depth to neutral axis; Strain in reinforcement; $\epsilon_t = 0.003 \times (d - c) / c = 0.060532$ Section is in the tension controlled zone Strength reduction factor; $\phi_f = \min(\max(0.65 + (\varepsilon_t - 0.002) \times (250 / 3), 0.65), 0.9) = 0.9$ Nominal flexural strength; $M_n = A_{bt.prov} \times f_y \times (d - a / 2) = 182.9 \text{ kNm/m}$ Design flexural strength; $\phi M_n = \phi_f \times M_n =$ **164.6** kNm/m $M / \phi M_n = 0.011$ PASS - Design flexural strength exceeds factored bending moment By iteration, reinforcement required by analysis; Abt.des = 11 mm²/m Minimum area of reinforcement - cl.7.6.1.1; $A_{bt.min} = 0.0018 \times h = 900 \text{ mm}^2/\text{m}$ PASS - Area of reinforcement provided is greater than minimum area of reinforcement required

Transverse reinforcement parallel to base

Minimum area of reinforcement - cl.76.1.1;	$A_{\text{bx.req}} = 0.0018 \times t_{\text{base}} = \textbf{900} \text{ mm}^2\text{/m}$
Transverse reinforcement provided;	16 mm dia @ 200 mm c/c each face

Area of transverse reinforcement provided;

 $A_{bx,prov} = 2 \times \pi \times \phi_{bx}^2 / (4 \times s_{bx}) = 2011 \text{ mm}^2/\text{m}$

PASS - Area of reinforcement provided is greater than area of reinforcement required

Reinforcement details

	Project		Job Ref.
	Transi		
	Section	Sheet no./	
			17
	Calc. by	Chk'd by	Date
Towera Shahr Construction Company	E. Ali Akbar Shaikhzadeh		4/8/2016

FRAME DESIGN

The frame of the building has been analysed and designed in ETABS software. Some figures of the model are shown below. However, due to the lengthy calculations and tables, the software complete report has not been added here and will be sent upon request.

	Project		Job Ref.
	Transi		
6	Section	Sheet no./	
		18	
	Calc. by	Chk'd by	Date
Tow/ea Jhahr Construction Company	E. Ali Akbar Shaikhzadeh		4/8/2016

• ×

												-
-78.0 -65.0 -5	2.0	-39.0	-26.0	-13.0	0.0	13.0	26.0	39.0	52.0	65.0	78.0	

	Project	Job Ref.	
T	Transi		
6	Section	Sheet no./	
			19
	Calc. by	Chk'd by	Date
Tow/ea Jhahr Construction Company	E. Ali Akbar Shaikhzadeh		4/8/2016

FOUNDATION & SLABS DESIGN

The foundation and slabs of the building has been designed in SAFE 2016 software. Some figures of the model are shown below. However, due to the lengthy calculations and tables, the software report has not been added here and will be sent upon request.

Basement foundation

Ground Floor Foundation

	Project	Job Ref.	
T	Transi		
	Section	Sheet no./	
		21	
	Calc. by	Chk'd by	Date
Towree Shahr	E. Ali Akbar Shaikhzadeh		4/8/2016

	Project		Job Ref.
T	Transi		
	Section		Sheet no./
2			22
	Calc. by	Chk'd by	Date
Towrea Than	E. Ali Akbar Shaikhzadeh		4/8/2016

	Project		Job Ref.
	Transi		
6	Section	Sheet no./	
		23	
	Calc. by	Chk'd by	Date
Tow/ea Shahr	E. Ali Akbar Shaikhzadeh		4/8/2016

Ground Floor Slab

	Project		Job Ref.
T	Transi		
	Section		Sheet no./
2			24
	Calc. by	Chk'd by	Date
Towrea Than	E. Ali Akbar Shaikhzadeh		4/8/2016

	Project		Job Ref.
T	Transi		
6	Section	Sheet no./	
			25
	Calc. by	Chk'd by	Date
Tow/ea Shahr Construction Company	E. Ali Akbar Shaikhzadeh		4/8/2016

Roof Slab

	Project		Job Ref.
T	Transi		
6	Section		Sheet no./
			26
	Calc. by	Chk'd by	Date
Tow/ea Shahr Commentation Company	E. Ali Akbar Shaikhzadeh		4/8/2016

