STRUCTURAL DESIGN

SUMMARY CALCULATIONS REPORT

for

TRANSIT CENTER

BY: Eng. Ali Akbar Shaikhzadeh
DATE: 07 Oct 2018

Contents

PROJECT INFORMATION 3
STRUCTURAL LOADING CRITERIA 4
Dead Loads 4
Live Loads 7
Wind Loading Prameters 7
Seismic Loading Parameters 7
STRUCTURAL CONTROL FROM ANALYSIS RESULTS 8
Horizontal Irregularities (ASCE 12.3.2.1) 8
Vertical Irregularities (ASCE 12.3.2.2) 9
BASEMENT RETAINING WALL ANALYSIS \& DESIGN 10
Retaining wall analysis 10
Retaining wall design 12
FRAME DESIGN 17
FOUNDATION \& SLABS DESIGN 19

	Project \quad Transit Center		Job Ref.
	Section	--	Sheet no./ 3
	Calc. by E. Ali Akbar Shaikhzadeh	Chk'd by	Date $4 / 8 / 2016$

PROJECT INFORMATION

Client
Type of project
Project Location

Type of main framing
Type of slabs
Type of foundation
Type of seismic resisting system

Loading design code (live, seismic, snow,...)
Concrete design code
Steel design code

Structural designer(s)

Norwegian Refugee Council
Residential Building
Nimrooz, Afghanistan

Reinforced concrete beams \& columns
Reinforced concrete slabs
Reinforced concrete strip foundation
Intermediate moment frame

ASCE 7-16
ACI 318-14
Not Applicable

Eng. Ali Akbar Shaikhzadeh

Project

Transit Center		Sob Ref.	---	
Section	-	Sheet no./	4	
Calc. by E. Ali Akbar Shaikhzadeh	Chk'd by	---	Date	4/8/2016

STRUCTURAL LOADING CRITERIA

DEAD LOADS

Exterior Walls

Layer Material	Thickness (m)	Density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	Weight/Area $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$	Remarks
Brick	0.2	850	170	
Grout (Gypsum \& soil) for inner face	0.02	1600	32	
Finishing (inner face)	0.005	1300	6.5	
Grout (cement) for outer face	0.04	2100	84	
Light Stone (outer face)	0.025	2500	62.5	
Total Weight				

Interior Walls (Partitions)

Layer Material	Thickness (m)	Density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	Weight/Area $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$	Remarks
Brick	0.1	850	85	
Grout (Gypsum \& soil) for inner face	0.02	1600	32	
Finishing (inner face)	0.005	1300	6.5	
Grout (Gypsum \& soil) for outer face	0.02	1600	32	
Finishing (outer face)	0.005	1300	6.5	
Total Weight				

Floor Slabs (without the concrete slab)

Layer Material	Thickness (m)	Density (kg/m ${ }^{3}$)	Weight/Area $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$	Remarks
Grout (cement) for top face	0.025	2100	52.5	
Ceramics	0.005	2100	10.5	
Grout (Gypsum \& soil) for bottom face	0.02	1600	32	
Finishing (bottom face)	0.005	1300	6.5	
Total Weight			101.5	

Roof Slab (without the concrete slab)

Layer Material	Thickness (m)	Density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	Weight/Area $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$	Remarks
Asphalt	0.03	2200	66	
Bitumen	-	-	15	
Grout (cement) for top face	0.02	2100	42	
Lightweight concrete (Grading)	0.15	2100	315	
Grout (Gypsum \& soil) for bottom face	0.02	1600	32	
Finishing (bottom face)	0.005	1300	6.5	
Total Weight				

	Transit Center		Job Ref.
	Section	--	Sheet no./ 5
	Calc. by E. Ali Akbar Shaikhzadeh	Chk'd by	Date $4 / 8 / 2016$

Stairs

Size of Run (m)	0.3
Size of Rise (m)	0.15
Angle of Ramp (deg.)	31

NOTE: Table calculations are for one step of the stairs and 1-m width (perpendicular to ramp direction) only.

Layer Material	Thickness (m)	Projected Plan Longitudinal Size (m)	Density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	Weight/Length $(\mathrm{kg} / \mathrm{m})$	Remarks
Thread stone	0.040	0.32	2500	32.0	
Rise stone	0.020	0.11	2500	5.5	
Grout under stones	0.020	0.37	2100	15.5	
Brick (average height used)	0.055	0.26	1850	26.5	
Concrete ramp	0.150	0.35	2500	131.2	
Gypsum \& soil	0.020	0.35	1600	11.2	
Finishing (bottom face)	0.005	0.35	1300	2.3	

Weight per 1-meter length of ramp	$\mathbf{7 4 7 . 4}$
kg / m	
If we multiply by one meter width, the total weight in one square meter is obtained. Thus:	

	Transit Center		Job Ref.
	Section	--	Sheet no./ 6
	Calc. by E. Ali Akbar Shaikhzadeh	Chk'd by	Date $4 / 8 / 2016$

DEAD LOAD CALCULATIONS FOR LANDING OF STARS

Layer Material	Thickness (m)	Projected Plan Longitudinal Size (m)	Density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	Weight/Area $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$	Remarks
Thread stone	0.040	-	2500	100.0	
Grout under stones	0.020	-	2100	42.0	
Concrete ramp	0.150	-	2500	375.0	
Gypsum \& soil	0.020	-	1600	32.0	
Finishing (bottom face)	0.005	-	1300	6.5	
Total Weight					

Weight per $1-\mathrm{m}^{2}$ of landing	555.5

SUMMARY OF LOADS FOR STAR

Weight per $1-\mathrm{m}^{2}$ projected plan area of ramp	$\mathbf{7 4 7 . 4}$	$\mathrm{kg} / \mathrm{m}^{2}$
Weight per $1-\mathrm{m}^{2}$ of landing	$\mathbf{5 5 5 . 5}$	$\mathrm{kg} / \mathrm{m}^{2}$
Live load per $1-\mathrm{m}^{2}$ of ramp \& landing	$\mathbf{5 0 0 . 0}$	$\mathrm{kg} / \mathrm{m}^{2}$

NOTES:

1- Using the tributary area of each beam supporting the stairs, the total dead and live loads on that beam is obtained.
2- Dividing by the beam length, the linear load on the beam can be calculated.
3 - In calculation of the ramp tributary area on a supporting beam, the projected plan area of ramp is considered.

	Project Transit Center		Job Ref.
	Section	--	Sheet no./ 7
	Calc. by E. Ali Akbar Shaikhzadeh	Chk'd by	Date $\quad 4 / 8 / 2016$

LIVE LOADS

Live loads has been selected based on ASCE 7-16 Table 4-1.

WIND LOADING PRAMETERS

Parameter	Value	Remarks
Structure type (enclosed, partially enclosed, or open)	Partially Enclosed	
Roof type	Flat	
Basic wind speed	$140 \mathrm{~km} / \mathrm{h}$	
Risk category	II	
Directionality factor, k_{d}	0.85	
Topographical factor, k_{zt}	1	C
Exposure category	0.85	
Gust effect factor	No	
Topography significant? (Y/N)	Directional	
Design method (directional, envelope, C\&C)		

SEISMIC LOADING PARAMETERS

Parameter	Value	Remarks
Site class (section 11.4.2)	D	
Mapped spectral acceleration parameter S_{s}	0.60 g	
Mapped spectral acceleration parameter S_{1}	0.30 g	
Risk category	II	
Seismic design category (Table 11.6-1 \& 11.6-2)	D	
Lateral load resisting system	Intermediate moment frame	
Long-period transition period	8 sec	
Response modification factor, R	5	3
System overstrength, omega	4.5	
Deflection amplification factor, C_{d}	1	
Occupancy importance, I		

	Transit Center		Job Ref.
	Section	--	Sheet no./ 8
	Calc. by E. Ali Akbar Shaikhzadeh	Chk'd by	Date $\quad 4 / 8 / 2016$

STRUCTURAL CONTROL FROM ANALYSIS RESULTS

HORIZONTAL IRREGULARITIES (ASCE 12.3.2.1)

HORIZONTAL STRUCTURAL IRREGULARITIES

	Transit Center		Job Ref.
	Section	--	Sheet no./ 9
	Calc. by E. Ali Akbar Shaikhzadeh	Chk'd by	Date $4 / 8 / 2016$

VERTICAL IRREGULARITIES (ASCE 12.3.2.2)

VERTICAL STRUCTURAL IRREGULARITIES

	Project Transit Center		Job Ref.
	--		Sheet no./ 10
	Calc. by E. Ali Akbar Shaikhzadeh	Chk'd by	Date $4 / 8 / 2016$

BASEMENT RETAINING WALL ANALYSIS \& DESIGN

RETAINING WALL ANALYSIS

In accordance with International Building Code 2015

Retaining wall details

Stem type;
Stem height;
Prop height;
Stem thickness;
Angle to rear face of stem;
Stem density;
Toe length;
Base thickness;
Base density;
Height of retained soil;
Angle of soil surface;
Depth of cover;

Retained soil properties

Soil type;
Moist density
Saturated density;
Effective angle of internal resistance;
Effective wall friction angle

Base soil properties

Soil type;
Soil density;
Cohesion;
Effective angle of internal resistance;
Effective wall friction angle;
Effective base friction angle;
Allowable bearing pressure;

Loading details

Dead surcharge load;
Live surcharge load;

Propped cantilever pinned at the base
$h_{\text {stem }}=\mathbf{2 5 0 0} \mathbf{~ m m}$
$h_{\text {prop }}=2500 \mathrm{~mm}$
$\mathrm{t}_{\text {stem }}=200 \mathrm{~mm}$
$\alpha=90 \mathrm{deg}$
$\gamma_{\text {stem }}=24 \mathrm{kN} / \mathrm{m}^{3}$
Itoe $=1000 \mathrm{~mm}$
$\mathrm{t}_{\text {base }}=500 \mathrm{~mm}$
$\gamma_{\text {base }}=24 \mathrm{kN} / \mathrm{m}^{3}$
$h_{\text {ret }}=2300 \mathrm{~mm}$
$\beta=\mathbf{0}$ deg
$\mathrm{d}_{\text {cover }}=\mathbf{0} \mathbf{~ m m}$

Medium dense well graded sand
$\gamma_{\mathrm{mr}}=21 \mathrm{kN} / \mathrm{m}^{3}$
$\gamma_{\mathrm{sr}}=23 \mathrm{kN} / \mathrm{m}^{3}$
$\phi r=30 \mathrm{deg}$
$\delta_{\mathrm{r}}=\mathbf{0} \mathrm{deg}$

Medium dense well graded sand
$\gamma_{\mathrm{b}}=18 \mathrm{kN} / \mathrm{m}^{3}$
$\mathrm{C}_{\mathrm{b}}=0 \mathrm{kN} / \mathrm{m}^{2}$
$\phi \mathrm{b}=30 \mathrm{deg}$
$\delta_{b}=15 \mathrm{deg}$
$\delta_{b b}=\mathbf{3 0}$ deg
$P_{\text {bearing }}=96 \mathrm{kN} / \mathrm{m}^{2}$

Surcharge ${ }_{D}=5 \mathrm{kN} / \mathrm{m}^{2}$
SurchargeL $=5 \mathrm{kN} / \mathrm{m}^{2}$

	Project Transit Center		Job Ref.
	Section	--	Sheet no./ 11
	Calc. by E. Ali Akbar Shaikhzadeh	Chk'd by	Date $4 / 8 / 2016$

Calculate retaining wall geometry

Base length;
$I_{\text {base }}=I_{\text {toe }}+t_{\text {stem }}=1200 \mathrm{~mm}$
Moist soil height;
$\mathrm{h}_{\text {moist }}=\mathrm{h}_{\text {soil }}=\mathbf{2 3 0 0} \mathbf{~ m m}$
Length of surcharge load;
$l_{\text {sur }}=l_{\text {heel }}=0 \mathrm{~mm}$
$X_{\text {sur_ }}=I_{\text {base }}-I_{\text {heel }} / 2=1200 \mathrm{~mm}$
$h_{\text {eff }}=h_{\text {base }}+d_{\text {cover }}+h_{\text {ret }}=\mathbf{2 8 0 0} \mathbf{~ m m}$
$X_{\text {sur_h }}=h_{\text {eff }} / 2=1400 \mathrm{~mm}$
$\mathrm{A}_{\text {stem }}=\mathrm{h}_{\text {stem }} \times \mathrm{t}_{\text {stem }}=0.5 \mathrm{~m}^{2}$
$X_{\text {stem }}=I_{\text {toe }}+t_{\text {stem }} / 2=1100 \mathrm{~mm}$
Abase $=I_{\text {base }} \times t_{\text {base }}=0.6 \mathrm{~m}^{2}$
$X_{\text {base }}=l_{\text {base }} / 2=\mathbf{6 0 0} \mathrm{mm}$

- Distance to vertical component;

Using Rankine theory

At rest pressure coefficient;
$\mathrm{K}_{0}=1-\sin \left(\phi_{\mathrm{r}}\right)=\mathbf{0 . 5 0 0}$
Passive pressure coefficient;
$K_{P}=(1+\sin (\phi ь)) /(1-\sin (\phi ь))=3.000$
From IBC 2015 cl.1807.2.3 Safety factor
Load combination 1;
$1.0 \times$ Dead $+1.0 \times$ Live $+1.0 \times$ Lateral earth

Bearing pressure check

Vertical forces on wall

Wall stem;
Wall base;
$F_{\text {stem }}=A_{\text {stem }} \times \gamma_{\text {stem }}=12 \mathrm{kN} / \mathrm{m}$

Total;
$F_{\text {base }}=A_{\text {base }} \times \gamma_{\text {base }}=14.4 \mathrm{kN} / \mathrm{m}$
$F_{\text {total_v }}=F_{\text {stem }}+F_{\text {base }}=26.4 \mathrm{kN} / \mathrm{m}$

	Project Transit Center		Job Ref.
	Section	--	Sheet no./ 12
	Calc. by E. Ali Akbar Shaikhzadeh	Chk'd by	Date $\quad 4 / 8 / 2016$

Horizontal forces on wall

Surcharge load;
Moist retained soil;
Base soil;
Total;

Moments on wall

Wall stem;
Wall base;
Total;

Check bearing pressure

Distance to reaction;
Eccentricity of reaction;
Loaded length of base;
Bearing pressure at toe;
Bearing pressure at heel;
Factor of safety;
$F_{\text {sur_h }^{h}}=\mathrm{K}_{0} \times\left(\right.$ Surcharge $_{\mathrm{D}}+$ Surcharge $\left._{\mathrm{L}}\right) \times \mathrm{h}_{\text {eff }}=14 \mathrm{kN} / \mathrm{m}$
Fmoist_h $=K_{0} \times \gamma_{\mathrm{mr}} \times \mathrm{heff}^{2} / 2=41.2 \mathrm{kN} / \mathrm{m}$
$F_{\text {pass_h }}=-K_{p} \times \gamma_{\mathrm{b}} \times\left(d_{\text {cover }}+h_{\text {base }}\right)^{2} / 2=-6.7 \mathrm{kN} / \mathrm{m}$
$F_{\text {total_h }}=F_{\text {moist_h }}+F_{\text {pass_h }}+F_{\text {sur_h }}=48.4 \mathrm{kN} / \mathrm{m}$
$M_{\text {stem }}=F_{\text {stem }} \times X_{\text {stem }}=13.2 \mathrm{kNm} / \mathrm{m}$
$M_{\text {base }}=F_{\text {base }} \times \mathrm{X}_{\text {base }}=8.6 \mathrm{kNm} / \mathrm{m}$
$M_{\text {total }}=M_{\text {stem }}+M_{\text {base }}+M_{\text {sur }}=21.8 \mathrm{kNm} / \mathrm{m}$
$\bar{x}=M_{\text {total }} / F_{\text {total_v }}=827 \mathrm{~mm}$
$e=\bar{x}-l_{\text {base }} / 2=227 \mathrm{~mm}$
$l_{\text {load }}=3 \times($ lbase $-\bar{x})=1118 \mathrm{~mm}$
$q_{\text {toe }}=\mathbf{0} \mathrm{kN} / \mathrm{m}^{2}$
$q_{\text {heel }}=2 \times$ Fotal_v $/ l_{\text {load }}=47.2 \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{FoS}_{\mathrm{bp}}=\mathrm{P}_{\text {bearing }} / \max \left(\mathrm{q}_{\text {toe }}, \mathrm{q}_{\text {heel }}\right)=2.033$;
PASS - Allowable bearing pressure exceeds maximum applied bearing pressure

RETAINING WALL DESIGN

In accordance with ACI 318-14

Concrete details

Compressive strength of concrete;
Concrete type;

Reinforcement details

Yield strength of reinforcement;
Modulus of elasticity or reinforcement;

Cover to reinforcement

Front face of stem;
Rear face of stem;
Top face of base;
Bottom face of base;
$\mathrm{f}^{\prime} \mathrm{c}=\mathbf{2 8} \mathrm{N} / \mathrm{mm}^{2}$
Normal weight
$\mathrm{f}_{\mathrm{y}}=420 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{E}_{\mathrm{s}}=199948 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{C}_{\mathrm{sf}}=40 \mathrm{~mm}$
$\mathrm{C}_{\mathrm{sr}}=\mathbf{5 0} \mathrm{mm}$
$\mathrm{Cbt}_{\mathrm{bt}}=50 \mathrm{~mm}$
$\mathrm{C}_{\mathrm{bb}}=75 \mathrm{~mm}$

From IBC 2015 cl.1605.2.1 Basic load combinations

Load combination no.1;
Load combination no.2;
Load combination no.3;
Load combination no.4;
$1.4 \times$ Dead
$1.2 \times$ Dead $+1.6 \times$ Live $+1.6 \times$ Lateral earth
$1.2 \times$ Dead $+1.0 \times$ Earthquake $+1.0 \times$ Live $+1.6 \times$ Lateral earth
$0.9 \times$ Dead $+1.0 \times$ Earthquake $+1.6 \times$ Lateral earth

	Project Transit Center		Job Ref.
	Section	--	Sheet no./ 13
	Calc. by E. Ali Akbar Shaikhzadeh	Chk'd by	Date $4 / 8 / 2016$

Shear force - Combination No. 2-kN/m

	Project Tr	Center	Job Ref.
	Section		Sheet no./
	--		14
	Calc. by E. Ali Akbar Shaikhzadeh	Chk'd by	Date $\quad 4 / 8 / 2016$

Check stem design at 1080 mm

Depth of section;

$$
\mathrm{h}=200 \mathrm{~mm}
$$

Rectangular section in flexure - Section 22.3

Design bending moment combination 2 ;
Depth of tension reinforcement;
Compression reinforcement provided;
Area of compression reinforcement provided;
Tension reinforcement provided;
Area of tension reinforcement provided;
Maximum reinforcement spacing - cl.11.7.2;

Depth of compression block;
Neutral axis factor - cl.22.2.2.4.3;

Depth to neutral axis;
Strain in reinforcement;

Strength reduction factor;
Nominal flexural strength;
Design flexural strength;
$\mathrm{M}=19.6 \mathrm{kNm} / \mathrm{m}$
$\mathrm{d}=\mathrm{h}-\mathrm{C}_{\mathrm{sf}}-\phi_{\mathrm{sx}}-\phi_{\mathrm{sfM}} / 2=136 \mathrm{~mm}$
16 mm dia bars @ $250 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
$\mathrm{A}_{\text {srm.prov }}=\pi \times \phi_{\text {srm }^{2}} /\left(4 \times \mathrm{S}_{\mathrm{srm}}\right)=804 \mathrm{~mm}^{2} / \mathrm{m}$
16 mm dia bars @ 250 mm c/c
$\mathrm{A}_{\mathrm{sfM}}$.prov $=\pi \times \phi_{\mathrm{sfM}^{2}} /\left(4 \times \mathrm{S}_{\mathrm{sfM}}\right)=804 \mathrm{~mm}^{2} / \mathrm{m}$
$S_{\max }=\min (18 \mathrm{in}, 3 \times \mathrm{h})=457 \mathrm{~mm}$
PASS - Reinforcement is adequately spaced
$a=A_{\text {sfM. }}^{\text {prov }} \times \mathrm{f}_{\mathrm{y}} /\left(0.85 \times \mathrm{f}^{\prime} \mathrm{c}\right)=14 \mathrm{~mm}$
$\beta_{1}=\min \left(\max \left(0.85-0.05 \times\left(\mathrm{f}^{\prime} \mathrm{c}-28 \mathrm{~N} / \mathrm{mm}^{2}\right) / 7 \mathrm{~N} / \mathrm{mm}^{2}, 0.65\right), 0.85\right)$ $=0.85$
$c=a / \beta_{1}=17 \mathrm{~mm}$
$\varepsilon_{\mathrm{t}}=0.003 \times(\mathrm{d}-\mathrm{c}) / \mathrm{c}=\mathbf{0 . 0 2 1 4 3 5}$
Section is in the tension controlled zone
$\phi_{f}=\min \left(\max \left(0.65+\left(\varepsilon_{t}-0.002\right) \times(250 / 3), 0.65\right), 0.9\right)=0.9$
$M_{n}=A_{\text {sfi }}$. prov $\times f_{y} \times(d-a / 2)=43.5 \mathrm{kNm} / \mathrm{m}$
$\phi \mathrm{M}_{\mathrm{n}}=\phi_{\mathrm{f}} \times \mathrm{M}_{\mathrm{n}}=39.2 \mathrm{kNm} / \mathrm{m}$
$\mathrm{M} / \phi \mathrm{M}_{\mathrm{n}}=0.499$

PASS - Design flexural strength exceeds factored bending moment
By iteration, reinforcement required by analysis;

$$
\mathrm{A}_{\mathrm{sfM} . \text { des }}=391 \mathrm{~mm}^{2} / \mathrm{m}
$$

Minimum area of reinforcement - cl.9.6.1.2; $\quad A_{s f m . m i n}=\max \left(0.25 \times \sqrt{ }\left(f_{c}{ }_{c} \times 1 \mathrm{~N} / \mathrm{mm}^{2}\right), 1.4 \mathrm{~N} / \mathrm{mm}^{2}\right) \times \mathrm{d} / \mathrm{f}_{\mathrm{y}}=453$ $\mathrm{mm}^{2} / \mathrm{m}$

PASS - Area of reinforcement provided is greater than minimum area of reinforcement required

Check stem design at base of stem

Depth of section;

$$
\mathrm{h}=200 \mathrm{~mm}
$$

	Project Transit Center		Job Ref.
	Section	--	Sheet no./ 15
	Calc. by E. Ali Akbar Shaikhzadeh	Chk'd by	Date $\quad 4 / 8 / 2016$

Rectangular section in shear - Section 22.5

Design shear force; $\quad V=39.5 \mathrm{kN} / \mathrm{m}$
Concrete modification factor - cl.19.2.4; $\quad \lambda=1$
Nominal concrete shear strength - eqn.22.5.5.1;

$$
V_{c}=0.17 \times \lambda \times \sqrt{ }\left(f_{c}^{\prime} \times 1 \mathrm{~N} / \mathrm{mm}^{2}\right) \times \mathrm{d}
$$

$=122.3 \mathrm{kN} / \mathrm{m}$

Strength reduction factor;
Design concrete shear strength - cl.11.5.1.1;
$\phi_{\mathrm{s}}=0.75$
$\phi \mathrm{V}_{\mathrm{c}}=\phi_{\mathrm{s}} \times \mathrm{V}_{\mathrm{c}}=91.8 \mathrm{kN} / \mathrm{m}$
$\mathrm{V} / \phi \mathrm{V}_{\mathrm{c}}=\mathbf{0 . 4 3 1}$
PASS - No shear reinforcement is required

Check stem design at prop

Depth of section;

Rectangular section in shear - Section 22.5

Design shear force;
$\mathrm{V}=21 \mathrm{kN} / \mathrm{m}$
Concrete modification factor - cl.19.2.4; $\quad \lambda=1$
Nominal concrete shear strength - eqn.22.5.5.1;

$$
V_{c}=0.17 \times \lambda \times \sqrt{ }\left(f_{c}^{\prime}{ }_{c} \times 1 \mathrm{~N} / \mathrm{mm}^{2}\right) \times \mathrm{d}
$$

$=122.3 \mathrm{kN} / \mathrm{m}$
Strength reduction factor;
$\phi_{\mathrm{s}}=0.75$
Design concrete shear strength - cl.11.5.1.1;
$\phi \mathrm{V}_{\mathrm{c}}=\phi_{\mathrm{s}} \times \mathrm{V}_{\mathrm{c}}=91.8 \mathrm{kN} / \mathrm{m}$
$\mathrm{V} / \phi \mathrm{V}_{\mathrm{c}}=\mathbf{0 . 2 2 9}$
PASS - No shear reinforcement is required

Horizontal reinforcement parallel to face of stem

Minimum area of reinforcement - cl.11.6.1; $\quad A_{\text {sx.req }}=0.002 \times \mathrm{t}_{\text {stem }}=400 \mathrm{~mm}^{2} / \mathrm{m}$
Transverse reinforcement provided;
Area of transverse reinforcement provided;
16 mm dia @ 200 mm c/c each face
$A_{s x . p r o v}=2 \times \pi \times \phi_{s x^{2}} /\left(4 \times \mathrm{S}_{\mathrm{sx}}\right)=2011 \mathrm{~mm}^{2} / \mathrm{m}$
PASS - Area of reinforcement provided is greater than area of reinforcement required
Rectangular section in shear - Section 22.5

Design shear force;
Concrete modification factor - cl.19.2.4; $\quad \lambda=1$
Nominal concrete shear strength - eqn.22.5.5.1;
$=122.3 \mathrm{kN} / \mathrm{m}$
Strength reduction factor;
Design concrete shear strength - cl.7.6.3.1;
$\phi_{s}=0.75$
$\phi \mathrm{V}_{\mathrm{c}}=\phi_{\mathrm{s}} \times \mathrm{V}_{\mathrm{c}}=91.8 \mathrm{kN} / \mathrm{m}$
$\mathrm{V} / \phi \mathrm{V}_{\mathrm{c}}=\mathbf{0 . 0 8 9}$
PASS - No shear reinforcement is required

Check base design at toe
Depth of section;
$\mathrm{h}=500 \mathrm{~mm}$

Rectangular section in flexure - Section 22.3

Design bending moment combination 1 ;
Depth of tension reinforcement;
Compression reinforcement provided;
Area of compression reinforcement provided;
Tension reinforcement provided;
Area of tension reinforcement provided;
$\mathrm{M}=1.8 \mathrm{kNm} / \mathrm{m}$
$\mathrm{d}=\mathrm{h}-\mathrm{Cbt}-\phi \mathrm{bt} / 2=442 \mathrm{~mm}$
16 mm dia bars @ 200 mm c/c
$A_{\text {bb.prov }}=\pi \times \phi_{\text {bb }}{ }^{2} /(4 \times \mathrm{Sbb})=1005 \mathrm{~mm}^{2} / \mathrm{m}$
16 mm dia bars @ 200 mm c/c
Abt.prov $=\pi \times \phi_{\text {bt }}{ }^{2} /(4 \times \mathrm{Sbt})=1005 \mathrm{~mm}^{2} / \mathrm{m}$

	Project Transit Center		Job Ref.
	Section	--	Sheet no./ 16
	Calc. by E. Ali Akbar Shaikhzadeh	Chk'd by	Date $4 / 8 / 2016$

Maximum reinforcement spacing-cl.7.7.2.3; $\quad S_{\max }=\min (18 \mathrm{in}, 3 \times \mathrm{h})=457 \mathrm{~mm}$
PASS - Reinforcement is adequately spaced

Depth of compression block;
Neutral axis factor - cl.22.2.2.4.3;

Depth to neutral axis
Strain in reinforcement;

Strength reduction factor;
Nominal flexural strength;
Design flexural strength;
$a=A_{b t . p r o v} \times f_{y} /\left(0.85 \times f^{\prime} c\right)=18 \mathrm{~mm}$
$\beta_{1}=\min \left(\max \left(0.85-0.05 \times\left(\mathrm{f}^{\prime} \mathrm{c}-28 \mathrm{~N} / \mathrm{mm}^{2}\right) / 7 \mathrm{~N} / \mathrm{mm}^{2}, 0.65\right), 0.85\right)$
$=0.85$
$\mathrm{c}=\mathrm{a} / \beta_{1}=21 \mathrm{~mm}$
$\varepsilon_{\mathrm{t}}=0.003 \times(\mathrm{d}-\mathrm{c}) / \mathrm{c}=\mathbf{0 . 0 6 0 5 3 2}$
Section is in the tension controlled zone
$\phi_{f}=\min \left(\max \left(0.65+\left(\varepsilon_{t}-0.002\right) \times(250 / 3), 0.65\right), 0.9\right)=0.9$
$\mathrm{M}_{\mathrm{n}}=A_{\text {bt.prov }} \times \mathrm{f}_{\mathrm{y}} \times(\mathrm{d}-\mathrm{a} / 2)=182.9 \mathrm{kNm} / \mathrm{m}$
$\phi \mathrm{M}_{\mathrm{n}}=\phi \mathrm{f} \times \mathrm{M}_{\mathrm{n}}=164.6 \mathrm{kNm} / \mathrm{m}$
$\mathrm{M} / \phi \mathrm{M}_{\mathrm{n}}=0.011$
PASS - Design flexural strength exceeds factored bending moment
By iteration, reinforcement required by analysis;
$A_{\text {bt.des }}=11 \mathrm{~mm}^{2} / \mathrm{m}$
Minimum area of reinforcement - cl.7.6.1.1; $\quad A_{b t . m i n}=0.0018 \times h=900 \mathrm{~mm}^{2} / \mathrm{m}$
PASS - Area of reinforcement provided is greater than minimum area of reinforcement required

Transverse reinforcement parallel to base

Minimum area of reinforcement - cl.76.1.1; $\quad A_{\text {bx.req }}=0.0018 \times \mathrm{t}_{\text {base }}=900 \mathrm{~mm}^{2} / \mathrm{m}$
Transverse reinforcement provided; 16 mm dia @ 200 mm c/c each face
Area of transverse reinforcement provided; $\quad A_{b x . p r o v}=2 \times \pi \times \phi x^{2} /(4 \times S b x)=2011 \mathrm{~mm}^{2} / \mathrm{m}$
PASS - Area of reinforcement provided is greater than area of reinforcement required

	Project \quad Transit Center		Job Ref.
	Section	--	Sheet no./ 17
	Calc. by E. Ali Akbar Shaikhzadeh	Chk'd by	Date $\quad 4 / 8 / 2016$

FRAME DESIGN

The frame of the building has been analysed and designed in ETABS software. Some figures of the model are shown below. However, due to the lengthy calculations and tables, the software complete report has not been added here and will be sent upon request.

	Project Transit Center		Job Ref.
	Section	--	Sheet no./ 18
	Calc. by E. Ali Akbar Shaikhzadeh	Chk'd by	Date $4 / 8 / 2016$

	Transit Center		Job Ref. ---
	Section		Sheet no./
	---		19
	Calc. by E. Ali Akbar Shaikhzadeh	Chk'd by	Date $\quad 4 / 8 / 2016$

FOUNDATION \& SLABS DESIGN

The foundation and slabs of the building has been designed in SAFE 2016 software. Some figures of the model are shown below. However, due to the lengthy calculations and tables, the software report has not been added here and will be sent upon request.

Basement foundation

	Transit Center		Job Ref.
	Section	--	Sheet no./ 20
	Calc. by E. Ali Akbar Shaikhzadeh	Chk'd by	Date $\quad 4 / 8 / 2016$

(A) (B) (C)
(D)
(EE) (बH)
(114) (K)
(IV)
(*0)
(P)
(a)
(R)

(18)

Deformed Shape - Displacements (Soil-Envelope) Min [mm]

(A)
(B) (C)
(D) (EF) (बH)
((1J) (K)
(M)
(v0)
(P)
(a)
(R)

Ground Floor Foundation

	Transit Center		Job Ref.
	Section	--	Sheet no./ 21
	Calc. by E. Ali Akbar Shaikhzadeh	Chk'd by	Date $4 / 8 / 2016$

	Transit Center		Job Ref.
	Section	--	Sheet no./ 22
	Calc. by E. Ali Akbar Shaikhzadeh	Chk'd by	Date $\quad 4 / 8 / 2016$

x

Wi\#formed Shape - Displacements (Soil-Envelope) Min [mm]

	Transit Center		Job Ref.
	Section	--	Sheet no./ 23
	Calc. by E. Ali Akbar Shaikhzadeh	Chk'd by	Date $4 / 8 / 2016$

Ground Floor Slab

	Project Transit Center		Job Ref.
	Section	--	Sheet no./ 24
	Calc. by E. Ali Akbar Shaikhzadeh	Chk'd by	Date $4 / 8 / 2016$

	Transit Center		Job Ref.
	Section		Sheet no./
	St --		25
	Calc. by E. Ali Akbar Shaikhzadeh	Chk'd by	Date $\quad 4 / 8 / 2016$

Roof Slab

	Transit Center		Job Ref.
	Section	--	Sheet no./ 26
	Calc. by E. Ali Akbar Shaikhzadeh	Chk'd by	Date $\quad 4 / 8 / 2016$

(A) (B) C)
(D)
(IFF) (ब4) (B)
(1)
(va)
(P)
(a)
(A)

逪 Beam Major Moment Diagram - (OCONU2) [kN-m]

